Monoidal cut strengthening and generalized mixed-integer rounding for disjunctions and complementarity constraints
نویسندگان
چکیده
In the early 1980s, Balas and Jeroslow presented monoidal disjunctive cuts exploiting the integrality of variables. This article investigates the relation of monoidal cut strengthening to other classes of cutting planes for general two-term disjunctions. We introduce a generalization of mixed-integer rounding cuts and show equivalence to monoidal disjunctive cuts. Moreover, we demonstrate the effectiveness of these cuts via computational experiments on instances involving complementarity constraints. Finally, we present an adaptation of the mixed-integer rounding approach for mixed-complementarity problems.
منابع مشابه
Monoidal Cut Strengthening and Generalized Mixed-Integer Rounding for Disjunctive Programs∗
This article investigates cutting planes for mixed-integer disjunctive programs. In the early 1980s, Balas and Jeroslow presented monoidal disjunctive cuts exploiting the integrality of variables. For disjunctions arising from binary variables, it is known that these cutting planes are essentially the same as Gomory mixed-integer and mixed-integer rounding cuts. In this article, we investigate ...
متن کاملLift-and-project for general two-term disjunctions
In this paper we generalize the cut strengthening method of Balas and Perregaard for 0/1 mixed-integer programming to disjunctive programs with general two-term disjunctions. We apply our results to linear programs with complementarity constraints.
متن کاملOn cut generation for facial disjunctive programs with two-term disjunctions
In this paper we generalise the method of Balas and Perregaard for 0/1 mixed-integer programming to facial disjunctive programs with two-term disjunction. We apply our results to linear programs with complementarity constraints.
متن کاملA note on the MIR closure and basic relaxations of polyhedra
Anderson, Cornuéjols and Li (2005) show that for a polyhedral mixed integer set defined by a constraint system Ax ≥ b, where x is n-dimensional, along with integrality restrictions on some of the variables, any split cut is in fact a split cut for a basic relaxation, i.e., one defined by a subset of linearly independent constraints. This result implies that any split cut can be obtained as an i...
متن کاملStronger Cuts from Weaker Disjunctions
We discuss an enhancement of the Balas-Jeroslow procedure for strengthening disjunctive cuts for mixed 0-1 programs. It is based on the paradox that sometimes weakening a disjunction helps the strengthening procedure and results in sharper cuts. When applied to a split cut derived from a source row of the simplex tableau, the enhanced procedure yields, besides the Gomory Mixed Integer cut (GMI)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oper. Res. Lett.
دوره 45 شماره
صفحات -
تاریخ انتشار 2017